

RHIC/LHC heavy ion program requirements

NERSC NP Requirements Workshop Apr 29-30, 2014

High Temperature Phases of QCD

STAR at RHIC

Rich program over ~14 years

Top Energy: AuAu @ $\sqrt{s} = 200 \text{ GeV/c}^2$ Polarized: pp @ $\sqrt{s} = 200 \& 500 \text{ GeV/c}^2$

Reference data: pp, dAu, CuCu, CuAu

Beam Energy Scan: AuAu @ $Vs = 7,11,15,19,27,39 \text{ GeV/c}^2$

Largest data set to date
AuAu @ √s = 200 GeV/c²
700 million minimum bias events
500TB analysis ready data files

STAR

ALICE @ LHC

ALICE LHC Run 1: 2010-2013

pp @ 0.9 - 8. TeV/ c^2 PbPb @ 2.6 TeV/ c^2 pPb @ 5.02 TeV/ c^2

ALICE Run 1
7PB of Raw Data
16PB of derived data

racteristics of computing in collider-based experience

- Event-based processing

 "pleasantly parallel"
 - Each collision = independent event
 - Dataset = event collection
 - Distributed in independent files
 - Computing task
 - process an event collection
 - set of independent jobs, 1 job→N files
 - Natural fit with distributed processing
 - On nodes, cluster of nodes, grids of clusters
- Large, complicated detectors

 software infrastructure
 - Requires algorithm expertise per subsystem
 - Common framework with reliance on common toolsets: ROOT, GEANT, ...
 - 10s of millions of lines of code
- > HPC methods are **not** typically used

racteristics of computing in collider-based experimental

- HEP/NP data intensive science
 - High precision measurements require statistically large samples
 - Experiments continuously operate over long running periods (6-10 months)
 - ALICE + STAR ~ 75% of PDSF share
 - PDSF: 2500 cores & ~4PB disk storage
- Processing task: data reduction with pattern recognition
 - Raw signals processed into detector 'hits'
 - Detector hits into physics entities: particle tracks, energy deposition
 - User analysis: entities into → spectra, correlations, ...
- International collaborations: large scientific user base
- ➤ Operate vast, loosely-coupled resources over a sustained periods of time: → High Throughput Computing (HTC)

STAR Physics Plans → 2017

- Precision measurement of heavy flavor (charm) production
- Two new major detector systems
 - Heavy Flavor Tracker (HFT)
 - Muon Telescope Detector (MTD)
- ~5x data increase
 - 2014 : 2+ billion AuAu @ 200 GeV/c2
 - 2015 : 200 million pp, 500 millon pAu @ 200 GeV/c²
 - 2016 : 2+ billion AuAu @ 200 GeV/c2
 - Note: data is analyzed for years
- Future program goal → high statistics Beam Energy Scan

ALICE LHC Run 2: 2015-2017

Exploring LHC Energy Regime

- accumulate statistics
- pp, PbPb & pPb

Detector upgrades

- DCal → back-to-back calorimeter
- Precision measurements at very large p_T
 - Jet-hadron correlations

2-3x data increase

- 7 billion p+p events @ 8-14 TeV/c²
- 0.7 billion PbPb events @ 5.5 TeV/c²
- 0.4 billion pPb events @ ? TeV/c²

STAR Computing Model

- Non-distributed model
 - 85% of work done at RACF at BNL
 - 15% at NERSC/PDSF + KISTI
- Data management in single instance STAR File Catalog
 - two-way mirror at NERSC
- Rely on site-specific data storage, GPFS, XRootD, ...
- STAR @ NERSC
 - Software built and maintained locally
 - Users log into PDSF and submit jobs on local batch system
 - heavy use of STAR purchased PDSF file systems
 - NGF is critical for migrating to other NERSC system, primarily Carver
 - Large HPSS allocation for archival of derived data

ALICE Computing Model

- Distributed model organized within WLCG Collaboration
- ALICE Grid Facility
 - Tier 0 at CERN
 - Several Tier 1 sites
 - Includes archival storage
 - None in US by choice
 - ~80 Tier 2 sites
 - CPU & stable disk storage
 - 3 active in US: NERSC, LLNL/LC, & OSC
 - ORNL to replace LLNL
- Software distributed via CVMFS
- High Throughput Computing (HTC)
 - 500 million cpu-hrs/yr
 - >10 million jobs

ALICE Data model

- Data distributed at generation & registered in FileCatalog
 - 1st copy at site of processing
 - 2nd copy at nearby site
 - 3rd copy hot data only
- Jobs go to site with data
 - Can pull from WAN on error
- Data Access patterns
 - 10/1 read/write
 - Hot data is much higher.

- Analysis "Lego" trains reduce read access
 - Many analyses connected to same input
 - More than doubled <cpu/wall>
 - 10:1 is an improvement!

Storage Technology: XRootD

Each with 10s PBs

distributed WW

- Wide use by LHC exp.
 - 3 different models
 - 4th including STAR
 - Distributed structure
 - Internal data discovery
 - Network access protocol
- plug-in architecture
 - protocols, authN/authZ, ...
 - e.g. LSST parallel query
- Requires data management layer
 - Experiment-specific tools

Andy Hanushevsky's NERSC talk*

Current Large Deployments

- # LHC ALICE
 - Data catalog driven federation
- # LHC ATLAS
 - Regional topology
- # LHC CMS
 - Uniform topology with some regionalization
- # LSST (Large Synoptic Sky Telescope)
 - Clusters mySQL servers for parallel queries
- RHIC STAR
 - >5 PB w/ local disk on >500 of WNs
 - Local access only

http://www.slac.stanford.edu/~abh/nersc/NERSC1311.pptx *

XRootD at NERSC

ALICE Grid Enabled Storage Element @ NERSC

- Part of global data storage system
 - Both WAN and local access
- 10 data servers \rightarrow 0.72 PB
- ALICE supplied data management layer
 - SE Discovery @ ALICE Global FileCatalog
 - Data discovery locally with XRootD
 - Monitoring by ALICE MonaLisa module

STAR XRootD@NERSC

- Independent of system @ BNL
 - LAN access only → servers on compute nodes
 - 200+ servers → 1.0 PB
- Local data management layer
 - Scripts walk data & load local MongoDB
 - Includes XRootD, GPFS, NGF & HPSS
 - Users query for file lists, access w/ ROOT

Data file regenerated: November 25 13:45:07

Redirector = pstarxrdr1 Total Size = 1050.3979 TB Free Space = 822.2353 TB

Supervisors: mc0101-ib pc1715 pc2101 pc2601

Next Generation for ALICE: EOS

- CERN IT project built on top of XRootD
 - Dynamic life-cycle management with simple operation model
 - Significant system administration features on top of XRootD
 - Works well with cheap hardware

STAR & ALICE Baseline: \rightarrow 2017

- ALICE-USA Computing Project
 - Manages disk and cpu procurements and deployment
 - Review of new 3-year proposal (FY15-FY17) this June
 - Expect modest growth at 2017:
 - 2x cpu capacity: ~10 kHEPSPEC06 → 20 kHEPSPEC06
 - 3x disk space: 0.7 PB → 2.0 PB
 - No large change in workflow
 - Little HPSS usage
- STAR Resources needs
 - Expect modest growth: cpu & disk → ~2x-3x
 - HPSS backlog due to manpower shortage ~ 1-2 PB
 - Computing Lead asked to investigate data preservation scheme with NERSC
 - 100% of STAR data moved to NERSC HPSS... several 10s PB
- Both ALICE & STAR leverage NERSC Grid enabled resources
 - Open Science Grid

Hitting HTC Limits

- HTC works best for near homogenous systems
- We do have specific tasks that fit accelerator architectures
 - But that breaks homogenous workflow structure
- Work is hitting on-board bottlenecks
 - 10GigE per worker node
 - 5GB/core memory

- Community needs to better use of whole node processing
 - HEP Colleagues @ ATLAS & CMS are further along
 - Multi-threaded GEANT and ROOT is critical

LHC High Luminosity Era: Run 4 3

Big Data Outlook

ALICE High Luminosity Era: Run 3

- Run 3 (2019): ALICE to operate in continuous readout mode
 - Data rate off the detectors: ~TB/s → 1PB/day
 - Overwhelms predicted bandwidth and permanent storage capacities
 - Real-time online data reduction methods Not triggered data, minimum bias!
 - Large & complex online compute facility
 - Must leverage trends in many-core
 - Offline quality event reconstruction
- Online/Offline (O²) Project
 - Full/fast Offline processing in Online
 - Fast detector calibration, reco & QA
 - Final store ONLY reduced data
 - 100x data reduction with 100x event rate

O² Era Challenges

- Online/Offline Reconstruction @ 50kHz Event Rate
 - continuous data stream
 - Real-time event reconstruction
 - Data buffering
 - real-time 2nd/final pass calib
 - event reconstruction
- Large new Monte Carlo needs
 - Currently 60% of grid resources
 - Scales approx ~ #-real-events
 - New strategies underway
 - event sample increase ~ 100x !!

- Move some MC production onto HPC facilities?
 - ➤ ALICE hopes to leverage US opportunity ... of proximity?

ALICE-US T2 Sites & HPC Facilities

NERSC Edison

NERSC Hopper

ORNL Titan

TACC Stampede

Both Titan and Stampede use accelerator technologies

ALICE Use of HPC Resources

- ALICE: base code already ported to Cray
 - Geant4 version 10
 - includes support for multi-threading
 - ALICE port to Geant4 exists
 - New rewrite project: Geant V
 - Root 6.x under development
- Workflow is a challenge
 - Working with ASCR PanDA project
 - Becomes trivial with one requirement
 - Outgoing connection from compute node →NAT

Summary

- STAR & ALICE have 'pleasantly parallel' event-based processing
 - HTC not HPC modes
- ALICE relies heavily on distributed processing & grid-enabled resources, STAR less so
- Requirements from both groups show modest (~3x) growth
 - STAR HPSS has a backlog for HPSS
- High luminosity running for ALICE in 4 years

 HPC solutions
 - ALICE O2 project is underway to prepare
 - Code base evolution, GEANT & ROOT, are also underway
 - Could leverage NERSC resources for workflow & processing model
 - scale of need is modest.